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Abstract.

We consider an Abel equation () y' = p(z)y*+q(z)y® with p(z), ¢(z) — polynomials
in . A center condition for this equation (closely related to the classical center
condition for polynomial vector fields on the plane) is that yo = y(0) = y(1) for
any solution y(z). This condition is given by vanishing of all the Taylor coefficients
v(1) in the development y(z) = yo + 3 ey vi(2)ys. Following [BFY?2] we introduce
periods of the equation (x) as those w € C, for which y(0) = y(w) for any solution
y(x) of (x). The generalized center conditions are conditions on p, ¢ under which given
ay,...,ar are (exactly all) the periods of (x).

A new basis for the ideals Iy = {vs, ..., v} has been produced in [BFY1], defined
by a linear recurrence relation. Using this basis and a special representation of polyno-
mials, we extend results of [BFY2], proving for small degrees of p and ¢ a composition
conjecture, stated in [AL], [BFY2], [BFY3]. In particular, this provides transparent
generalized center conditions in the cases considered. We also compute maximal pos-
sible multiplicity of the zero solution of (*), extending results of [AL].

PACS numbers: 34A34, 34A20

Submitted to: Nonlinearity
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1. Introduction

We consider the following formulation of the center problem (see e.g. [Sch] for a general
discussion of the classical center problem): Let P(z,y), Q(z,y) be polynomials in z, y

of degree d. Consider the system of differential equations

{i:_y'l'P(‘ray) (1.1)

y=z+ Q(‘Ta y)

We say that a solution x(t), y(t) of (1) is closed if it is defined in the interval [0, o]
and z(0) = z(to), y(0) = y(to). We say that the system (1.1) has a center at 0 if all the
solutions around zero are closed. Then the general problem is: under what conditions
on P, the system (1.1) has a center at zero?

It was shown in [Ch] that one can reduce the system (1.1) with homogeneous P, Q)

of degree d to the Abel equation

y' = p(2)y* + q(2)y’ (1.2)
where p(z), ¢(z) are polynomials in sinz, cos x of degrees depending only on d. Then
(1.1) has a center if and only if (1.2) has all the solutions periodic on [0, 27], i.e. solutions
y = y(x) satisfying y(0) = y(2x).

We will look for solutions of (1.2) in the form

V(o) = o+ 3 el At (13

k=2

where y(0,y0) = yo. The coefficients vy, turn out to be polynomials both in z and A,
where A = (A1, Ag,...) is the (finite) set of the coefficients of p, ¢. Shortly we will write

vp(x).

Then y(27) = y(27,y0) = Yo + ka(Zw)yg and hence the condition y(27) = y(0)
k=2
is equivalent to vy (27) = 0 for k =2,3,... 00,

Consider an ideal J = {v2(27),v3(27),...vx(27),...} € C[A]. By Hilbert Basis
theorem there exists dy < 00, s.t. J = {v2(27),v3(27),...v4,(27)}. After determination
of dy the general problem will be solved, since we get a finite number of conditions on
A, which define the set of p, ¢ having all the solutions closed . The problem is that the
Hilbert theorem does not allow us to define dy constructively.

As it was shown in [AL], [L], [BFY1-3] there are good reasons to consider the
equation (1.2) with p, ¢ usual polynomials instead of trigonometric ones (although the
relation to the initial problem (1.1) becomes less direct here). In this paper we restrict
ourselves to this case, although some of our results remain valid for the trigonometric
case. Notice, however, that the composition conjecture, as it is stated below, is not true

in the trigonometric case (see [A]).
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2. Composition conjecture, objectives and results.

In what follows we shall study the Abel equation (1.2) with p, ¢ the usual polynomials
in x instead of trigonometric ones. In this case we say that the equation (1.2) defines
a center if y(1,y0) = yo. Although this property does not correspond to the initial
problem (1.1), it presents an interest by itself and it has been studied in [GL], [L], [AL]
and in many others papers.

Let us study instead of J C C[A] the polynomials ideal I C C[A, z],

o0

I ={vs(x),v3(x),...v6(2),...} = U I, where Ij, = {vqy(z), v3(x), ... ve(x)}.

k=2
The classical problem is to find conditions on p, ¢, under which x = 1 is a common zero

of all /.

Our generalized center problem is the following:
For a given set of different complex numbers a; = 0,ay,...,a,; find conditions on p, q,

under which these numbers are common zeroes of I.

We shall say that such p, ¢ define a center on [0;ay;...;a], or that they satisfy
generalized center conditions. Numbers as,...,a, will be called periods of (1.2),
since y(0) = y(a;) for all the solutions y(x) of (1.2).

In contrast to the situation over the real segment [0,1], the condition y(0) = y(w)
over the complex plane requires an additional explanation. Indeed, the solutions of (1.2)

~1/2 Hence

have “moving singularities’, where the solution behaves roughly as (x — )
the value y(w) depends on the path along which we continue it from y(0).

However, for yq sufficiently small, the singularities of y(z), satisfying y(0) = yo, can
be shown to be out of any prescribed disk around the origin in the z-plane. (Notice
that y = 0 is a solution of (1.2).) Hence the values y(w) for yo small can be defined
independently of the chosen continuation path. Our precise center property is that the
germ y(w)(yo) at yo = 0 is identically equal to yo. (Of course, if this happens, by ana-
lytic continuation y(w), properly defined, is always equal to yo.)

For each number w we define the multiplicity of the zero solution with respect
to w. Here we follow notations in [AL], where multiplicity was defined for the standard
equation (1.2) on [0,w] C R as the number g such that vi(w) = 1, v2(w) = v3(w) =
. =v,-1(w) =0, and v,(w) # 0. Now we extend this notation and define multiplicity
for the equation (1.2) on C for any number w € C.

The number w will be a period if vi(w) = 1 and vg(w) = 0 for all & > 0. In other
words, w is a period, if its multiplicity is equal to infinity.

We define multiplicity p(dy,dy) as the maximal value of multiplicity achieved for

some p, g of degrees d; — 1, dy — 1 respectively and for some w € C.
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Notice that here and below we define the degree of a polynomial as the highest

degree of x in it, entering with nonzero coefficient.

The following composition conjecture has been proposed in [BFY2]:

o0
I = U I, has zeroes ay,ay,...a; , a; = 0, if and only if
k=1

P(z) = / ()t = PW(x)) , Q(x) = / Syt = O(W(x)) |

where W(z) = H(;v — az-)W is a polynomial, vanishing at ay,as,...ax, and P, Q
i=1
are some polynomials without free terms.

Sufficiency of this conjecture is almost obvious (see [BFY2]). But we still do not
have any method to prove the necessity of this conjecture in the general case, although
the connection between this conjecture and some interesting analytic problems was
established (see [BFY1], [BFY2], [BFY3]), and for some simplified cases it was partially
or completely proved.

Notice that if the composition conjecture would be true it could provide compact
and transparent generalized center conditions (which relatively easily can be expressed
by explicit equations on the coefficients of p and ¢). See [BFY2] and section 7 below for
explicit formulae.

As for now the only known to us way to prove the conjecture is to compute
consequently polynomials v, (z)’s, to solve systems of polynomial equations v,(a;) = 0
in many variables (a; and coefficients of p, ¢), and to show that the solutions satisfy
composition conjecture.

In [BFY2] it was shown that the composition conjecture is true for the cases
(deg P,deg Q) = (dy,d2) = (2,2) — (2,6) and (3,2), (3,3). In [AL] multiplicities were
computed for the cases (deg P,deg Q) = (dy,dz) = (2,2) — (2,6) and (3,4).

In this paper we present the following results:

a) The maximal number of different zeroes of I, i.e. the maximal number of periods
of (1.2) is estimated (section 3).

b) The generalized center conditions are obtained for some classes of polynomials
p, q (of a special form but of an arbitrarily high degree) (sections 4, 5)

¢) The composition conjecture is verified for the following additional cases
(deg P,deg Q) = (d1,d2) = (2,7),(3,4),(4,2),(4,3),(4,4),(5,2),(6,2),(3,6). It is done
using computer symbolic calculations with some convenient representation of P and )
. For these and previous cases multiplicities are computed (section 6).

d) On this base explicit center conditions for the equation (1.2) on [0,1] are written
in all the cases considered. They turn out to be very simple and transparent, especially

in comparison with the equations provided by vanishing of vi(1,X) (section 7).
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3. Maximal number of different zeroes of /.

One can easily show (by substitution of the expansion (1.3) into the equation (1.2)) that

vi(x) satisfy recurrence relations

vo(z) =0

vi(z) =1

v,(0) =0 and (3.1)
o) =ple) Y vl +ae) Y @z, n 2

It was shown in [BFY1] that in fact the recurrence relations (3.1) can be linearized,
i.e. the same ideals I}’s are generated by {i1,...1¢r}, where ¥(x) satisfy linear

recurrence relations

to(z) =0
P(z) =1 (3.2)
¥,(0) =0 and .

Yn(z) = =(n = Dibna(2)p(z) — (n = 2)¢bn_a(2)q(x), n =2

which are much more convenient then (3.1). We call (3.2) the main recurrence re-

lation.

Direct computations (including several integrations by part) give the following

expressions for the first polynomials ¢ (z), solving the recurrence relation (3.2) (remind

that P(z) = /Oxp(t)dt, Q) = /O q(t)dt) :

bolz) = — P()
bs(z) = P2(x) — Q(x) x
Gale) = — P2(x) +3P(2)Q(x) - / o(1)P(t)dt

Consequently, we get the following set of generators for the ideals I, k=2,...,4

IQZ{P}7 ]3:{P7Q}7 14:{P7Qa/qp}'

Therefore, if a is a zero of the ideal Iy, it must satisfy the following equations:

Pla) =0, Q(a) =0, /O P(t)q(t)dt = 0

Let us assume now that the set of zeroes of I; consists of the points ay =
0,as,...,a,, a; # a;. In particular, a; are common zeroes of P and (), and we can

write

Pz) = W(z)Pi(z), Q(z) = W(z)Q(z)
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where W(z) = [[_,(z — a;).
Substituting these representations into the equation / P(t)g(t)dt =0 and
0

integrating by parts, we get forz =1,..., v,
/Oai W(p1Q1 — Pig) =0
Here pi(x) = Pi(2), a(x) = Q4(2).
This allows us to prove the following theorem:

Theorem 3.1. Fither the number of different zeroes (including 0) of I is less
than or equal to (deg P + deg Q))/3, or P is proportional to Q.

Proof:
k

Let P = WP, Q = WQ,, W = H(;c—az-) ~ a polynomial, accumulating

i=1
all surviving zeroes ay,...,ar, deg P, = ¢, deg)y = (5. Consider the function
flz) = / W?(p1Q1 — 1 Py)dt and assume first that py@Q; — ¢ Pr # 0. Since all a;

0
are zeroes of both f and W, we get f(z) = W?3S(z), hence deg f(z) > 3k. From
the other side deg f(z) = 2k + ({4 + € — 1)+ 1 = {1 4+ {5 + 2k. So, {1 + > + 2k =
(b4 + k) + (by + k) = deg P 4 deg Q > 3k, q.e.d.

Now let p1@Q1—q1 Pr =0, i.e. (P1Q1)" = 2¢1P1. Denote P1Q; by X, Q1 by Y. Then
¢ =Y, P =X/Y, hence X' =2Y'% ie. & =2Y je. X =CY2% ie. Qi = CQ?,
q.e.d.

Corollary 3.2.  Fither P is proportional to (), or the number of different periods
of (1.2) is less than or equal to ((deg P + degQ)/3) — 1.

Remark: This result is implicitly contained in computations, given in [BFY3] .

4. A convenient representation of P and () and algebra of compositions of

polynomials.

Let polynomials r(z) and W(z) be given. Assume we are interested in checking

whether R(z) = / r(t)dt can be represented as a composition with W(z), i.e. if
0

R(z) = E(W(lﬁ)) for some polynomial R without free term.

Let W(z) = z(x — a). Notice, that the derivative of W is a polynomial of the first
degree W'(x), the polynomial W(z)W'(x) has the third degree and so on. Generally,
polynomials W (z)* have degree 2k and polynomials W (z)* W'(z) have degree 2k + 1.
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Therefore they are linearly independent and form a basis of C[z]. So, one can uniquely
represent any polynomial r(z) as a linear combination of polynomials W (z)* and
W(z)*W'(z). Hence any polynomial r(z) of the degree 2k or 2k + 1 we will write
in the form

r(z) = W(2)* (W (2)' + i) + W(2)" ™" (ara W () + Bima) + - + (W (2)' + Bo),
or simply
r(z) = Wk(akW’ + Br) + Wk_l(ozk_lwl + Be—1) + oo+ (aW' + o).

Generally, if W(z) = z(z — aq)...(x — ap), degW(z) = £ and r(z) is a polynomial
of degree ml + k, k € {0,...,{ — 1}, then r(z) can be uniquely represented in the form

r=W™EW +EW + .+ E W) 4 (W EW L+ W),

(where, of course, W) is a constant).

Now we can state the following

Theorem 4.1 R(z) = / r(t)dt is a composition with W (z) if and only if cj- =0
0
fore>2,57=0,...,m.

Proof:
If cj- =0fore>2,j=0,...,m, then obviously R(z) is a composition with W (z).
Let R(x) be a composition with W(z), then r(z) = R'(z) = R(W)W’, and by

uniqueness of basis expansion all cé- =0 for z > 2, q.e.d.

Notice that in the case degW = ¢ > 2 we can instead of the basis {W"W®) k =
0,...,¢—1} consider the basis {W"W' W"z* k =0,...,/—2} and the same statement
holds.

This representation will be used below for the verification of the composition

conjecture (see section 6).

5. Generalized center conditions for some classes of polynomials.

The representation, introduced in the section 4, gives us a convenient tool for finding
generalized center conditions for some classes of polynomials, i.e. for the verification of
the composition conjecture. As the first example let us show that one can easily produce
sequences of polynomials p and ¢ of arbitrarily high degrees, for which the composition
conjecture is true, i.e the generalized center conditions imply the representability of P,
() as a composition.

Let a; = 0,a2,...,a,; be given. Consider any polynomial W (z) vanishing at all the

points a;, 7 =1,...,L
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Theorem 5.1 Assume that for at least one a;, / J Wkdz # 0 and/ J Wndx # 0.

0 0
Polynomials p = W¥(a + BW'), ¢ = W"(y + §W') define center on [0;ay;...;a] if and
only if a =~ = 0.

a;
Remark: Notice, that the condition “/ W dzx # 0 for at least one a;” is satisfied,
0

¢
for instance, for W(z) = H(m — a;), where all a; are different. Indeed, consider the

i=1
T

function f(z) = / W(t)dt. If all a;,5 = 1,...,¢ would be zeroes of f(z), then

0
deg f > (k+ 1)(. But degW = {, so deg f(z) = kl + 1. We obtain kf +1 > (k + 1)/,

which is not satisfied for £ > 1 . ,

Similarly one can show that W(z) = H(x—ai)mi satisfies the condition
=1
a;
“ W¥hdz # 0 for at least one a;” for almost all k, and so on. So, this condition

0
is “almost generic”.

Proof of theorem 5.1:  Since ty(z) = P(z), the conditions ¥y(a;) = 0 imply
a = 0. Since ¥3(z) = P*(z) — Q(z), the conditions ¥3(a;) = 0 imply v = 0, q.e.d.

Theorem 5.2 Assume that degW > 2 and for at least one a;
a;

W da T W de

49 49 7é 0.
/ ! Wn+k+1dfl? / ! Wn+k+1 W//dlf
0 0

Polynomials p = W¥(a+ W), ¢ = W*(y + §W'+ eW") define center on [0;ay;. .. ; al
if and only ifa =~v=¢=0.

Proof: The conditions ©2(a;) = 0 imply o = 0. The conditions ¥3(a;) = 0 imply

/ W”—I—e/ W"W" =0,

and the conditions ¥4(a;) = 0 imply

~ /aj Wn+k+1 + 6/% Wn+k-|—1 W// - 0.
0 0

If the determinant of the system is nonzero, we get that the system has the only zero
solution, q.e.d.

Remark: In this article we discuss questions, connected to the polynomial case, but
actually constructions from section 5 can be easily generalized to the case of arbitrary
(analytic) functions p, ¢, W
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6. Verification of the main conjecture and counting of multiplicities.

6.1. Remarks about rescaling of P and Q.

1) As it was stated above, we always assume that the highest degree coefficient is not

ZEero.

2) As it was shown in [BFY2], if deg@ # 2deg P then using rescaling x — Ciz,
y — Chy, one can make the leading coefficients of P, () be equal to any positive num-
ber. So, for possible cases we will use polynomials P and ) in the form where the
leading coefficients equal either 1 or 2. For instance, for the case deg P=3, deg Q=4 we
will assume that P(z) = 22°+ ... (terms of degree less than 3), Q(z) = 2*+ ...(terms of
degree less than 4) and so on.

6.2. Main results.

Theorem 6.1 The following table of the maximal possible values of multiplicity
p(dy, ds) holds:

dy = deg P 2 3 4 ) 6

dy = deg Q)

2 3 or oo 4 4 or oo 8 9 or oo

3 4 4 or oo 8

4 4 or oo 8 9 or o0

5 5

6 Hor oo | 10 or oo

7 10

In this theorem we extend results of [AL], where multiplicities for the equation (1.2)
on [0,1] were computed for the cases (deg P, deg Q) = (2,2) — (2,6),(3,4). Alwash and
Lloyd used the standard representation of polynomials in basis {z",n = 0,1,...} on [0,1]
and leading coefficients of P and () as parameters. Also they used nonlinear recurrence
relation (2.1). Our representation together with linear recurrence relation (2.2) allows
us to go further and to compute multiplicities for higher degrees of P and Q).

Theorem 6.2 For these cases the composition conjecture is true and the following
table gives the possible number of different periods in each case:
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degP || 2 | 3 4 5 | 6
deg Q

2 0,1 0 | 0,1 [ 0 [o,1
3 0 0,2 o

4 0,1] 0 [0,1,3

5 0

6 0,1]0,2

7 0

Proof of theorems 6.1 and 6.2: The proof consists of computations of ¢, (z) for
each of the cases considered, and solving the systems of polynomial equations. It was
done using computer symbolic calculations using the special representation of P and Q).
Descriptions of computations for the most interesting cases are given below:
deg P=4, deg Q=4 — subsection 6.4
deg P=3, deg Q=6 — subsection 6.5

Other cases were considered similarly, but in most of the cases straightforward com-
putations were far beyond the limitations of the computer used. Consequently, some

non-obvious analytic simplifications were used. Part of them is presented in 6.4 - 6.5

Computations for the cases (deg P,deg Q) = (2,7),(3,6) were performed together

with Jonatan Gutman and Carla Scapinello.
6.3 Remark about resultants.

Resultants give us a convenient tool for checking, whether n + 1 polynomials of n
variables P;(x1,...,2,) € Clzy,...,z,] do not have common zeroes.
Consider one example. Assume we are interested whether polynomials P(z,y),

Q(z,y), R(x,y) have common zeroes.

Claim. Let Resultant[P,Q),z] = Si(y), Resultant[R,Q,z] = Si(y). If
Resultant[Sy, S2,y| # 0, then P, (), R do not have common zeroes.

Proof: Assume there exists common zero (g, yo) of all polynomials P, (), R, then
S1(yo) = Sa(yo) = 0, hence Resultant[Sy, Sz, y] = 0. Contradiction.

The general construction for n 4+ 1 polynomials of n variables is exactly the same.

6.4 deg P=4, deg Q=4

o0

Our goal is to prove that in this case I = U I, has common zeroes others than 0
k=1
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if and only if either P(z) = P(W(z)), Q(z) = Q(W(z)) for certain polynomials P, Q
without free terms, where W(x) = z(x —a), a # 0, or P is proportional to @) (and in
this case W = P and again P = P(W), Q = Q(W)). In the process of computations we
find the maximal finite multiplicity, which is achieved on polynomials unrepresentable

as a composition.

1) If P, Q are proportional, we are done. If P, ) are not proportional, then from
the theorem 3.1. we get that the maximal number of different zeroes is 2. And one of
them is necessarily 0.

2) Assume that [ has zeroes 0, a (a # 0). Since zeroes of I should be also zeroes

of P and @ , P and @) can be represented in the form (up to rescaling)
P=WW+yW' —a), Q=WW +sW' - p)

where W = z(z — a). For such P, ) numbers 0, a are common zeroes of ideals Iy, I,
I3. Then we will directly calculate, using the “Mathematica” software, ideals I,— Ig and
we will show that the only possibilities for I to have zeroes 0, a are either y =6 =0 or
P = Q. It will complete the verification of the composition conjecture for this case.

3) Running a program, which utilizes recurrence relation (3.2)

(* n-the number of ideals to be computed  *)
(* P, Q are defined symbolically *)
W=x(x-a);
P=Wx(W + gamma W’ - alpha);
Q=Wx(W + beta W’ - delta);
psi[0]=0;
psili]=1;
psil[2]=-P;
Do[psilil=Integratel
-(i-1)psili-1]*p-(i-2)psi[i-2]*q,x],{1,3,n}];
x=a;
Do [Simplify[psil[i]l],{i,1,n}];

we obtain the following results:

‘ _a’ (Tabd+2a (6 —~)=T087)
bala) = 210 ’

a” (4a* (§—7)+66a (ad—B7y)+1la®> Badé—2ay— 7))

Vs(a) =

6930
Since a # 0, we get
206~ ) = By — ad (*
(4a* + 22a*Q)(6 — ) + (b — B7)(66c + 11a®) = 0 ()

a) If 6 =~ #0, then from (%) a = 3, and hence P = @), we are done.
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b) If 6 =~ = 0, then we get a composition with W, and we are done.
c) Assume now ¢ # 7. Let us prove that in this case polynomials ¥x(a), k = 6,7,8,9

2 2
can not have common zeroes. Substituting ad — gy = %(7 — ¢) into (*#) and dividing
3a? 3
it by v — 6 we obtain a = —%. Then from (%) we get 6 = ’—27 + 22~. Running the
a

program for these values of «a, 6, we get

Jola) = = (@™ (3a®+118) v (—4719a* 4+ 3a® — 17303 B — 363 a* %))
| a) = .
6 10900890

2a2%6 2a? 3a?
If v = 0, then from () we get a +ab=0,i.e. 5(%—{—0[):0. Sincea = — a

we get 6 = 0. Contradiction to the assumption ¢ # . u’
If g = —%, then 3 = a, hence from (*) § = ~. Contradiction.
Otherwise from ¥g(a) = 0 we get
g 3a® — 4719a* — 363a*~? (5 %)

' 17303 ’
and running the program for these values (i.e. after substitution of «, 6, ), we get that
Yr(a), vs(a), g(a) are polynomials in a and v times (y(a—117)(a+11y). If vy = +a/11,
then from (x ) we get 3 = —3a*/11, so @ = 3 and hence v = §. Contradiction. Notice
that v # 0, since in this case 6 = 0 - contradiction.

So, we get 3 polynomials of two variables v, a - reminders after division polynomials
Vr(a), vs(a),ve(a) by (a* — 1214%). Canceling constants and computing resultants, we
get nonzero number, q.e.d.

The maximal finite multiplicity is 9 and it is achieved on the polynomials

32
P=ao—a) (4 21— e+ 5 - )

Q=z(z—a)(W+ W —3)

where
_ 3a® — 47194 — 363a'y?
17303 ’
21a* 21a%~?
1573 13

and a,~ are chosen to vanish ¥r(a), ¥g(a).

6.5 deg P=3, deg Q=6

This subsection is one of the most interesting parts of our computations, since for

the first time from the theorem 3.1. follows, that the number of different zeroes may be
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either 2 or 3. The nontrivial common divisor of 3 and 6 is equal to 3, and we have to

o0

prove that in this case I = U I, has common zeroes others than 0 if and only if Q(z)
k=1

can be represented as a composition with W(z) = Const P(x). The next point why this

case differs from others is that according to the subsection 6.1 we can assume that only
one of leading coefficients of P, () is 1. Say, the leading coefficient of () is 1, and the
leading coefficient of P is A.

1) Assume first, that there are two common zeroes 0, a, which means that we can
put
P=\W(z+ a), QZW(W2+ﬂJ?3—|-’}/J?2+5.1?—|-6>,

where W (z) = z(z — a).
a) Let a+2a # 0. After running a “Mathematica” program up to 15(a), we express

—a* 4+ 5a*8 + 12a*af + 14aé + 4a*y + 1daary

14
_ —9a® — 18a*a + 31a*B + 44aaff — 22a%3
= 22(a 1 2a)
After substitution and running the program again, we obtain from wg(a) = 0 that

B = a + 2a. After substitution of all these values into expression for (), we obtain
Q=WW+(a+ 20[):6‘3 + (—a2 — 2aa + oz2);v2 + 6z + oz(aoz2 +9))

= (W(z+ a)) (W(r +a) + aoz25)) ,

which means that we get the composition, and « is necessary the zero of our ideal.
We would like to stress, that we have obtained that « is a zero of I without direct

checking conditions ¥x(a) = 0.

b) For @ = —a/2 we obtain from ¥4(a) = 0 that

a* + a*B + Tad + 3a*y
14 ’

after that we immediately get from 1s(a) = 0 that 3 = 0. Then
Yg(a) = Consty an/\(—a2 + 47)(—20@2 + 52y — 21@2)\2)

Let v = a*/4. After substitution of «, 3,7, ¢ into the expression for Q, we get
Q = (W(z —a/2))(W(xz — a/2) + a® + 48), so the composition conjecture holds with

z(x —a)(x —a/2) as the greater common divisor of P and () in the composition algebra

of polynomials.
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20a* + 21a*)\?
Now let v # a*/4. Then from t¢(a) = 0 we obtain v = a—|—5—2a. After

substituting and performing computations, we get

@) —a® A (1+322) (526 +a® (20 + 21 12))
a) = .
! 487206720

2 2 —a®(20 4 21 )2
It A= :l:L, then ~ = ? . Contradiction. So, we express 0 = a’(20 + )
NG 1

52
Substituting it into the program and computing ¥s(a), we get

iela) a® X (9 + 29 A% 4 5508 A* + 16506 \°)
K a) = .
8 12274686103680

. . —1 %+ 13:4/293
The equation 1g(a) = 0 has the solutions A =0, \* = —1/3, \* = ! .

5502
? 2 —1 4 13:4/293
For A = :l:L_ we have v = az. Contradiction. And for \* = 550; we

obtain that ¥g(a) =0, ¥9(a) = 0, but ¥19(a) # 0, q.e.d.
The maximal finite multiplicity is 10 and it is achieved on polynomials

Pz)w(x—a)(x—g)

(T : 2 3(¢ ¢ 2 4 a2
Q:x(x_a)<x4_2a$3+a(72—{—21)\)$2_a(20+21)\)x+a(1+3)\)>’

52 52 26
—1 4 132293
3502 '

where \? =

2) Now comes another interesting case, when we assume from the very beginning

that we have three distinct common zeroes 0, a, b. Here we put
P=X\W, Q=W(W +az®+ Bz+7), where W =z(z—a)(z—b).

Notice, that here in contrast to the all previous computations we must check
vanishing at the two different points a,b. The equations ¥4(a) = 0, ¥4(b) = 0 form

linear system with respect to «, 3:

—a’ X (ha*a+1dab (ab—B)+140* 3+ 4a* (—4ab+ 3))

840 =0
X (14a* (ab+ B)+6* (hab+48)—2ab (8ab+1T713)) _ 0 ’
840 N

The determinant of this system is equal to 70(a — b)®, so for a # b, A #0,a #0, b # 0
the system may have the only zero solution @ = 0, = 0, q.e.d. The conjecture is

completely verified and the maximal multiplicity is 10.
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7. Description of a center set for p, ¢ of small degrees.
Consider again the polynomial Abel equation (1.2):
y'=p(2)y* +aq(x)y’,  y(0) =yo
with p(z), ¢(x) — polynomials in x of the degrees di, ds respectively. We will write
p(x) = Agz™ 4 -+ Xq,

q(z) = pa, ™ + - + po,
(Adla .- .,)\o,ﬂdl, .. .,/uo) = (/\’lu) c Qe td2+2

Remind that vi(z) (see Introduction for details) are polynomials in « with the coeflicients
polynomially depending on the parameters (\,u) € Ch+%+2  Tet the center set
C C Ch+d+2 consist of those (A, ) for which y(0) = y(1) for all the solutions y(z)
of (1.2). (This definition is not completely accurate, since the value y(1) may depend on
the continuation path from 0 to 1 in the z-plane. See section 2 for detailed discussion.)

Clearly, C' is defined by an infinite number of polynomial equations in (A, p) :
va(1) = 0,...,v%(1) = 0,... In other words, C is the set of zeroes Y (I) of the ideal
I = {vi(1),...,ve(1),...} in the ring of polynomials C[A, g]. (In [BFY1] I is called
the Bautin ideal of the equation (1.2).) Notice that in this section, in contrast to the
general approach introduced in this paper, we consider [ as the ideal in C[\, p] and not
in Cla, A, g .

The table of multiplicities, given in the theorem 6.1, gives the number of equation
vi(1) = 0, necessary to define C (i.e. the stabilization moment for the set of zeroes of
the ideals Ix(z)). Since both v(1) and tx(1) are polynomials of degree k — 1 in (A, p),
the straightforward description of (' contains polynomials of a rather high degree, for
example up to degree 10 of 9 variables for the case (deg P,deg Q) = (3, 6).

As it was said before, the composition conjecture, in contrast, gives us very explicit
and transparent equations, describing this center set C'. Especially explicit are equa-

tions in a parametric form (see below).

7.1. The central set for the equation (1.2) with deg p = deg ¢ = 2 has been
described in [BFY1]. We remind this result here. Let

p(z) = Az + Mz + Ao
q(z) = pax? + iz + po

Theorem 7.1. ([BFY1], Theorem V.1) The center set C' C C® of the equation
(1.2) is given by
203+ 3X\ +6X =0
219 + 3p1 + 6po =0
)\2M1 - )\1,M2 =0
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The set C' in C° is determined by vanishing of the first 3 Taylor coefficients vqy(1) =
0,...,v4(1) =0

Of course, this result, which was obtained from completely different considerations
than in this article, confirms the composition conjecture: since P and () are of a prime
degree 3, their greater common divisor in a composition algebra can be either x or a
polynomial of degree 3. This corresponds to a proportionality of P and @ (or of p

and ¢), which gives us exactly the last equation, and the first two are obtained from

P(1)=Q(1) =0

7.2. Now let
p(z) = A3z 4+ Az + Mz + Ao
q(x) = T + fio

Theorem 7.2. The center set C' C C°® of the equation (1.2) is given by

2)\2 —|— 3)\3 - 0
2)\1 —_ )\3 + 4/\0 == 0
1+ 2p =0

The set C in C° is determined by vanishing of the first 3 Taylor coeflicients vqy(1) =
0,...,v4(1) = 0.

Proof:

By the composition conjecture, which holds for this case, p and ¢ belong to the
center set if and only if P = P(W), Q = pW , where W = z(xz —1). So, we may assume
Q= px(x—1), P =aW? + BW. Thus we get

Q = pa(z —1) = Ela? + pox

2
A A A
P=a(z(x - 1))2 + Br(x—1) = f:ﬂ‘l + 32.103 + 71172 + oz

Comparing coefficients of z* in both sides of equalities, we get

)\3 =4 )\2 = —6a
)\1 :201+2,3 )\0: —/3 B
= 2p fo = —

which is equivalent to the system in the statement of the theorem.

7.3. 1If |
p(x) = Mz + Ao
g(z) = 32’ + a2’ + iz + po

then similarly to the previous theorem one can prove the following
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Theorem 7.3. The center set C' C C° of the equation (1.2) is given by

22 +3ps =0
21 — ps+4po =0
)\1 —|— 2)\0 = 0

The set C in C° is determined by vanishing of the first 3 Taylor coefficients vqy(1) =
0,...,v4(1) = 0.

7.4. Now let

p(z) = As2® 4+ Mgt + A32® + Maa? + Mz + Ao
q(x) = H1Z + fho

Theorem 7.4. The center set C' C C® of the equation (1.2) is given by

5As +2Xy =
10Xs + 1224 4+ 1535 4+ 205 4+ 301 + 607 =
Az +4Xy + 10X + 20X =

i+ 20 =

The set C' in C® is determined by vanishing of the first 8 Taylor coefficients
‘UQ(l) = 0, R ,‘Ug(l) = 0.

Proof:

By the composition conjecture, which holds for this case, p and ¢ belong to the
center set if and only if P = P(W), Q = pW , where W = z(x —1). So, we may assume
Q= px(x—1), P =aW? + gW? 4+ yW. Thus we get

1

pr(z—1) = 7:32 + pox
. . A A A A A
a(z(x — 1))2 + B (x(x — 1))2 +yz(x—1) = %xG + fo + f.r‘l + 32.%3 + ?1:172 + oz
Hence
)\5 = 6o )\4 = —15a

)\3 = 12« + 4/3 )\2 = —3a — 613
/\1:2ﬁ+2’}/ )\0:—’7 ’
f = 2p fto = —

which is equivalent to the system in the statement of the theorem.

7.5, If
p(.l?) = /\1.1' -|— /\0

q(z) = psx® 4 paxt + paa® + pox? + pir + po

then similarly to the previous theorem one can prove the following
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Theorem 7.5. The center set C' C C® of the equation (1.2) is given by

Sps + 214 =0

10ps + 12p4 4+ 15p5 + 20p2 + 3041 + 60pp =0
pa + Ape + 10p1 + 2000 =

AM+2N =0

The set C in C® is determined by vanishing of the first 4 Taylor coeflicients vy(1) =
0,...,v5(1) =0.

Remark: An interesting fact that center sets C' for the “similar” cases degp =
5,degq =1 and degp = 1,deg g = 5 have different number of generators vi(1) = 0 can
be explained by a different role of p and ¢ in ideals I. See section 3 for the first ideals
I, and [BFY2] for an attempt to analyze this problem.

7.6. Now let
p(x) = A3x® 4+ Aoz + Mz + Ao,
q(2) = psx’ + paa® + iz + po,
Theorem 7.6. ([BFY2], Theorem 9.2.) The central set C C C® of (1.2) consists

of two components C") and C?, each of dimension 4.

C™) is given by

(7.6.1)

3pa + dpg + 6py + 1200 =0
and
Aaply — ftary =0
Aspiy — psA; =0 (7.6.2)
Aot — prad =0
and C?) is given by (7.6.1) and

33+ 2\ =0
{ s (7.6.3)

3ps 4+ 2p2 =0

The set C in C® is determined by the vanishing of the first 8 Taylor coefficients
‘UQ(l) = 0, R ,‘Ug(l) = 0.

This theorem was proved in [BFY?2] using the fact that the composition conjecture
is true for this case. The component (7.6.1 & 7.6.2) corresponds to the proportionality
of P and @, and the component (7.6.1 & 7.6.3) corresponds to the composition with
W =uz(z-1).



Generalized center conditions and multiplicities 19

7.7. Let
p(x) = Aoz? + Mz + Ao

q(z) = psx® 4 paxt + paa® + pox? + pr + po

then similarly to the previous theorems one can prove the following

Theorem 7.7. The center set C C C° of the equation (1.2) is given in a parametric

form by
Ao = aX ts = ba
pa = —10a(a + 1) ps = 4a(a + 1)? + 8aa (7.7.1)
p2 = —baala+1)+38 = Q0a* — 2(a+1)p
Ho = aﬁ
or by
S5us (3o
=——— | —+1
Ha 3 ( X + >
2#5 3)\0 2 )\0
= — — 41 4—
K3 3<)\2+>—|—)\2ﬂ5
3#5)\0 3)\0 /,Lo)\g (772)
= — — 4+ 1
o X, ( " + ) + "

H1 =

3#5 )\(2) 3)\0 /Lo)\g
— 1
N

)\g b 3o

3/\1 = —2)\2 - 6/\0

The set C in C is determined by the vanishing of the first 9 Taylor coefficients
Ug(l) = 0, Ce ,Ulo(l) = 0.

Proof:
We can represent P = AW, Q = aW? 4 W, where W = z(z — 1)(z — a). Thus
3 2 ° )\2 3 )\1 2
)\(x —(a+ 1)z +ax) = ?r +?x + Aoz,

a (2% + (a+ 1% + a®a® — 2(a + )2’ + 202" — 2a(a + 1)a®) +

,3<.r3—.’172(a—|—1)+a$):%.IG—I—...—I—IMO.I'
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Comparing coefficients by z* in both sides of equalities, we obtain (7.7.1). After some
transformations we obtain (7.7.2). (Notice, that Ay # 0 as leading coefficient.)

Remark: Essential nonlinearity in (7.7.2) appears because of a “free period” a.
Notice, that for fixed a the parametric form (7.7.1) is linear with respect to «, 3, A.
One can notice, that nonlinearity appears in those and only those cases, when there are

“moving periods”, different from the endpoint 1 (see 7.1, 7.6, 7.7).
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